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We show that hemispherical dynamos can result from weak equatorial symmetry breaking of the flow in the
interior of planets and stars. Using a model of spherical dynamo, we observe that the interaction between a
dipolar and a quadrupolar mode can localize the magnetic field in only one hemisphere when the equatorial
symmetry is broken. This process is shown to be related to the one that is responsible for reversals of the
magnetic field. These seemingly very different behaviors are thus understood in a unified framework.
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Planets and stars seem to be able to generate hemispheri-
cal dynamos. During the Maunder minimum, the number of
spots at the Sun’s surface decreased and the sunspots were
mostly localized in the southern hemisphere �1�. It is be-
lieved that the magnetic field was then also dominant in this
hemisphere �2�. Although Mars does not act as a dynamo
anymore, it has been suggested that it did in the past and
created a hemispherical magnetic field �3�. In addition to
these observations, direct numerical simulations have clearly
identified hemispherical dynamos �4�. Another surprising be-
havior is that of the Earth’s magnetic field which reverses
randomly in time. Reversals have been observed in various
numerical simulations �5� and in a laboratory experiment �6�.
Among the numerical studies, events have also been reported
where the magnetic field is much larger in one hemisphere
�7�. Reversing and hemispherically localized magnetic fields
are two seemingly very different features of astrophysical,
numerical, and experimental dynamos.

We explain these two different behaviors in a unified
framework: they both result from the breaking of the equa-
torial symmetry of the flow. As direct numerical simulations
have already exhibited the two behaviors at stake, we focus
on a simple kinematic �2 dynamo model in which equatorial
symmetry can be broken. The obtained results are then gen-
eralized in the framework of dynamical systems theory:
when the equatorial symmetry is weakly broken, reversals or
hemispherical localization are shown to be two generic be-
haviors of any dynamo which two most unstable modes are
of dipolar and quadrupolar symmetries.

We consider a sphere of radius R that contains a fluid of
electrical conductivity � and magnetic permeability equals to
that of vacuum �0. The outside medium is vacuum. The
inductive processes of the flow are modeled by � effects
localized on two shells of vanishingly small radial thickness
located at radius �R and �R. On the outer shell, an � effect
converts the poloidal magnetic field into toroidal field. This
latter is converted back into poloidal field on the inner shell.
We thus write the � tensor in spherical coordinates �r ,� ,��
as

�ij = ���	�r − �R�	i�	 j� + ���	�r − �R�	i�	 j�. �1�

The two scalars ��� and ��� are supposed to depend on �
only and are written

��� = a1 + b1 cos��� + c1 cos�2�� + d1 cos�3�� ,

��� = a2 + b2 cos��� + c2 cos�2�� + d2 cos�3�� . �2�

Odd dependences in latitude model an equatorially symmet-
ric flow whereas even ones break this symmetry. We solve
the induction equation for this �2 dynamo and look for axi-
symmetric eigenmodes B�r�ep̃t solutions of

p̃B = � 
 ��B� + ��0��−1�2B �3�

for r�R and that match a potential field at r=R. Similar
calculations were performed for �−� dynamos with equato-
rially symmetric effects only �8,9�. From now on, we use the
dimensionless growth rate p= p̃�0�R2 and � effects
Ra1=�0�a1, Rb1=�0�b1¯ Moreover we set the position of
the shells �=0.55 and �=0.9.

We first consider an equatorially symmetric configuration
with Rb1=Rb2=20, Rd2=25, all other parameters being zero.
Two modes are then linearly unstable. The most unstable
eigenmode is of dipolar symmetry and is represented in Fig.
1 �top�. Its growth rate is p�1.26. For this set of parameters,
a second mode is unstable and its growth rate is only slightly
smaller p�1.21. This mode is represented in Fig. 1 �bot-
tom�. It is even under equatorial reflection and is therefore of
quadrupolar symmetry. The existence of two unstable modes
depends on the values of the parameters. We observe in gen-
eral that the dipolar and quadrupolar modes have similar
growth rates when the � effects are larger close to the poles.
Roughly speaking, both hemispheres generate a magnetic
structure. These structures are far from each other and thus
only weakly coupled: the situation with poloidal fields of
same polarity, i.e., a dipole, does not strongly differ from a
situation with opposite poloidal fields, i.e., a quadrupole.
This argument, see for instance �10�, explains why a dipole
and a quadrupole have similar growth rates and are likely to
be unstable for close values of the parameters.

Starting from this equatorially symmetric configuration,
we now break equatorial symmetry by adding an � effect
which has an even dependence on latitude. A first class of
equatorial symmetry breaking leads to a decrease in the dif-
ference between the growth rates of the two modes, p. To
illustrate this regime, we consider Rc1=−Rc2= P, where P
measures the symmetry breaking and Ra1=Ra2=0. When P
increases, p decreases but both modes remain stationary
until a bifurcation occurs at Pc=0.78 where the eigenvalues
of the two most unstable modes are equal. For P slightly
larger than Pc, they are complex conjugates. This corre-
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sponds to an exponentially growing oscillatory magnetic
field. A snapshot of the time evolution of the field during half
a period is shown in Fig. 2 for P=1. The dipole reverses and
during a reversal, a quadrupolar structure is observed. The
main effect of nonlinearities is to saturate the amplitude of
the magnetic field �see discussion below�: we have removed
the exponential growth in this representation. We point out
that the transition from stationary to oscillatory dynamo oc-
curs for small symmetry breaking. For P=1, the symmetry
breaking effects �Rc1 and Rc2� are of the order of 5% of the
equatorially symmetric terms.

It has already been observed that oscillatory dynamos can
be obtained from stationary modes when parameters are
changed. Numerical studies of �−� dynamos display transi-
tions from stationary to oscillatory decaying eigenmodes that
most likely result from an interaction between two modes
�11�. Competition between dipolar modes only has been

studied for �2 dynamos �12�: for particular forms of � effect,
i.e., diagonal and dependent on r only, oscillatory modes can
be observed. Here, we have shown that very weak equatorial
symmetry breaking is sufficient to couple a dipolar and a
quadrupolar mode so that a time periodic regime is obtained.
When nonlinear terms are taken into account, this transition
occurs through a saddle-node bifurcation and below the on-
set of bifurcation, turbulent fluctuations of the flow can trig-
ger random reversals �13�. Such time-dependent fluctuations
are not taken into account in our calculation. Nevertheless, in
the regime of random reversals, the snapshots obtained dur-
ing a reversal would be similar to that displayed in Fig. 2:
once a reversal has been initiated, its evolution is mainly
deterministic and corresponds to half a period of the nonlin-
ear oscillation obtained above the saddle-node bifurcation.

We have also identified other terms that break equatorial
symmetry but do not lead to reversals: the two most unstable
modes remain stationary and the difference between their
growth rates p increases. These modes display a surprising
spatial structure: the field is almost completely localized in
only one hemisphere. This is illustrated with the set of pa-
rameters Ra1=Ra2=−P and Rc1=Rc2=0 and in Fig. 3 the
most unstable mode is represented for P=0.2. Note that the
second most unstable mode is localized in the other hemi-
sphere. To quantify this localization, we compute En �respec-
tively, Es� the energy of the field measured at the surface of
the northern �respectively, southern� hemisphere for a fixed
radius r. We plot in Fig. 4 the relative energy in the northern
hemisphere fnh=En / �En+Es� as a function of P. For large P,
the ratio fnh saturates to a limit value f�. This value depends
on r and tends to 1/2 when r becomes very large. Indeed, for
large r /R, the field is dominated by the dipole for which
fnh=0.5. Nevertheless, we point out that even for r=2R, 83%
of the energy is still localized in the southern hemisphere in
the case shown in Fig. 3. This effect can thus be observed at
the surface of planets and stars even if dynamo action takes
place much deeper in the fluid core. At first sight, one might
believe that the localization is a straightforward consequence
of the �-effect being more intense in one hemisphere. We
present here the simplest form of symmetry breaking but we
have obtained the same behavior with different ones, such as
Ra1=−Ra2=−P: the two � effects are enhanced in different
hemispheres but hemispherical localization still occurs. Even
more surprisingly, we point out that a very weak symmetry
breaking has a drastic effect on the field localization. In Fig.
4, for P�0.05 i.e., as soon as Ra1 /Rb1=0.25%, more than
95% of the energy is located in the southern hemisphere at
r=R.

The fact that a symmetry breaking of a few percent leads
to such a strong modification of the geometry of the eigen-
mode is a consequence of the interaction between two modes
of instability. Indeed, hemispherical localization can be un-
derstood as a competition between a dipolar mode, D�r� with
amplitude d�t� and a quadrupolar mode Q�r� with amplitude
q�t� from which the total magnetic field is determined,
B=d�t�D�r�+q�t�Q�r�. The amplitude equation at linear or-
der for A=d+ iq is

Ȧ = ��r + i�i�A + ��r + i�i�Ā , �4�

where the coefficients �r, �i, �r, and �i are real. Searching
for a phase equation, we write A=r exp�i�� and obtain

FIG. 1. �Color online� Unstable magnetic field modes when the
flow properties are equatorially symmetric �see parameters in the
text�. The dashed circles are the two shells where the � effects are
located. On the right-hand side of the revolution axis �dotted�, the
lines of poloidal field are drawn. Lines of constant toroidal fields
are shown on the left hand side. Top �respectively, bottom�: mode of
dipolar �respectively, quadrupolar� symmetry.

BASILE GALLET AND FRANÇOIS PÉTRÉLIS PHYSICAL REVIEW E 80, 035302�R� �2009�

RAPID COMMUNICATIONS

035302-2



�̇ = �i + �i cos�2�� − �r sin�2�� . �5�

When the flow is equatorially symmetric, �i=�i=0 and �r
measures the difference between the growth rates of the two
modes. When equatorial symmetry is broken, �i and �i in-
crease. If �i increases faster than �i, a regime of reversals is
obtained �13�.

Our results show that some terms that break equatorial
symmetry do not lead to reversals, i.e., lead to �i increasing
faster than �i. This is responsible for hemispherical localiza-
tion of the field. Indeed, if �i is large compared to �i and �r,

the solutions of Eq. �5� remain stationary and are
��� /4,3� /4���. These values correspond to a total field
B�D�Q. Its spatial structure is easily understood: in one
hemisphere the amplitudes of the dipolar and quadrupolar
modes are of same sign and the field is strong, whereas in the
other hemisphere, the dipole and quadrupole are roughly op-
posite and their sum results in a field of very low intensity.
We have highlighted the fact that, for hemispherical localiza-
tion to occur, symmetry-breaking � effects do not need to be
large. This traces back to the similar growth rates of the
dipolar and quadrupolar modes. More precisely, the
symmetry-breaking effects of order �i need only to be larger
than the growth rate difference �r. Both terms can thus re-
main small.

FIG. 2. �Color online� Evolution of the magnetic field during a reversal obtained when the equatorial symmetry is weakly broken. From
left to right and top to bottom, half a cycle is represented at time t=0 �arbitrary�, t=T /10, 2T /10, 3T /10, 4.5T /10, and T /2, T being the
period. The dipolar field evolves toward a quadrupole before a dipole of opposite polarity is recovered.

FIG. 3. �Color online� Most unstable magnetic mode for a sym-
metry breaking that leads to field localization �see parameters in the
text�.
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FIG. 4. �Color online� Relative energy at the surface of the
northern hemisphere fnh=En / �En+Es� as a function of the intensity
P of the �-effect that breaks the equatorial symmetry. The curves
correspond to �thick� r=R, �dashed� r=2R, and �solid� r=5R for the
two unstable eigenmodes, the lower curve corresponding to the
most unstable eigenmode.
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The role of nonlinear terms can be understood in this low
dimensional approach. Terms in higher powers of A and Ā
have to be taken into account in Eq. �4�. Their main effect is
to saturate the field amplitude r. They also modify the coef-
ficients of Eq. �5�, but the qualitative features of reversals are
the same as those displayed in Fig. 2. More precisely, non-
linear terms would change the critical value Pc and the pre-
cise temporal dynamics of �. However, these two effects are
of higher order in the field amplitude and remain small pro-
vided the modes are only slightly supercritical. This is also
true for hemispherical dynamos.

Thanks to the low dimensional approach we have shown
that the results from the �2 model are generic and can be
used to describe the dynamics observed in astrophysical, nu-
merical, and experimental dynamos. Direct numerical simu-
lations of convective dynamos have displayed hemispheri-
cally localized fields where �both quadrupolar and dipolar
fields contribute nearly equal magnetic energy� even though
�the convection flow has lost little of its equatorial symmetry
in the presence of the hemispherical magnetic field� �4�. Nu-
merical models of Mars have also obtained hemispherical
dynamos �3�. Our results give a simple explanation for these
localized fields: if the dipolar and quadrupolar modes have
similar growth rates, even a very weak equatorial symmetry
breaking is enough to localize the field. As far as reversals
are concerned, a numerical study of the Von Karman sodium
experiment displayed a transition from steady to oscillatory
magnetic field resulting from the coupling between a dipolar
mode and a quadrupolar mode �14�.

Studies aimed at modeling the Maunder minimum consid-
ered an oscillatory dipole in competition with an oscillatory
quadrupole with similar pulsations �15�: nonlinear coupling
terms between these modes can generate hemispherically lo-
calized magnetic fields that remain time periodic. The pure
dipolar state is still a solution but is unstable toward a mixed
polarity state. Further above onset, chaotic behaviors have
also been observed �15,16�. Our mechanism for localization
also applies to this situation and does not require nonlinear

effects. In contrast to the aforementioned scenario, it does
not result from a secondary instability of a pure dipolar mode
but from the modification of the dipolar solution induced by
the breaking of the flow’s equatorial symmetry.

We can speculate on the origin of the symmetry breaking.
First the flows are turbulent and velocity fluctuations are
expected to break equatorial symmetry. Second, the bound-
ary conditions can be asymmetric: the pattern of thermal flux
at the core mantle boundary has been shown to influence the
frequency of reversals �17�.

Our simplified model captures some widespread features
of dynamos. Since our results are constrained by symmetry
considerations, more realistic models should display the
same behavior. In other words, all dynamos that have two
unstable modes of dipolar and quadrupolar symmetries be-
have the following way. Breaking the flow’s equatorial sym-
metry leads to two different regimes: a first class of symme-
try breaking associated to large �i in Eq. �5� results in
reversing and oscillating dynamos. A second class associated
to large �i generates hemispherical dynamos. The fact that
these apparently very different regimes result from the same
flow feature is appealing and strengthens the importance of
the competition between dipolar and quadrupolar modes. In
particular, we expect that several additional observations of
hemispherical magnetic fields will be reported in numerical,
experimental, or astrophysical dynamos.

Out of the dynamo context, our Rapid Communication
shows that the competition between two modes of different
symmetries leads to rich behaviors. It is known that reversals
can be observed in large scale flows generated over a turbu-
lent background in thermal convection or in periodically
driven flows �18�. We expect that a weak symmetry breaking
of the forcing can also generate a localization of these large
scale flows. This could strongly affect the mixing properties
or the thermal transfer efficiency of these systems.
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